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A graphical method of presenting numerical results relating to two-dimensional 
wave scattering by multiple obstacles is described. It is particularly suited to reducing 
computed scattered wave multipole values to a curve which may be readily interpreted. 
By suppressing single-scattering (isolated body) phcnomcna the method displays only 
those effects which arise from multiply-scattered waves. The technique is applied to 
interpret data obtained from a computational study of TM-wave scattering by two 
l.O-h-diameter conducting cylinders, and conclusions derived from these curves are 
shown to agree with results presented in more conventional form, elsewhere. The 
method is also used to interpret the results of studies on planar three cylinder arrays, 
including investigation of TM and TE illumination of conducting cylinders and also 
scattering by dielectric cylinders. The graphs described in this paper require less effort 
in their preparation than alternative presentations, and are of great value in assessing 
whether the results of a numerical investigation represent novel multiple-scattering 
behaviour, without the necessity of plotting the field intensity contours. In this sense 
the method provides a bridge between computer experiments and physical insight. It is 
also suggested that it may be possible to use these curves for the quantitative as well 
as the qualitative description of multiple-scattering effects. 

I. INTRODUCTION 

The scattering of electromagnetic waves by multiple obstacles has been the 
subject of investigation for over seventy years, and surveys of the extensive work 
done in this field are given by Twersky [14], Burke and Twersky [3] and Hessel 
and Oliner [4]. The existing body of literature shows that the complexity of many 
multiple scattering geometries precludes their analysis by classical or function- 
theoretic techniques, but electronic computers allow the rapid numerical solution 
of specific multiple-scattering problems at the expense of the physical insight which 
is afforded by general analytical formulations. 

On the other hand, the availability of efficient algorithms [6] for the solution 
of the equations describing the multiple scattering of scalar waves allows convenient 
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numerical investigation of such phenomena over wide ranges of selected geo- 
metrical and physical parameters. The difficulty with such methods lies in pre-. 
senting the numerical results in a succint manner which will aid in understanding 
the physics of the process involved. Plotting tota? field patterns or induced surface 
currents on the scatterer boundaries is time-consuming and inefficient unless there 
is a priori knowledge that the phenomenon to be depicted is sufficiently interesting 
to warrant the effort involved in producing such diagrams. 

This paper describes a graphical presentation of numerical results which 3-s 
particularly suited to the computational technique reported by Howarth and 
Pavlasek [6]. Briefly, the method graphically compares the cylindrical ~vave 
amplitudes predicted by approximate and exact multiple-scattering analyses, and 

rences between them are interpreted as a measure of the magnitude of mu%ipie- 
scattering effects neglected in the approximate formulations, Its value lies not only 
in its simplicity but, more importantly, in the fact that characteristic geometrical 

terns are evidently associated with different multiple-scattering phenomena. 
rice, a large volume of computed results may be quickly reduced to a manageable 

graphical form, allowing potentially interesting multiple-scattering effects to be 
identified from raw numerical data. 

At present, this technique has been used primarily as a selection mechanism 
applied to computed data. However, the shapes of the patterns associated with 
different physical effects are sufficiently distinctive such that in subsequent studies 
of the multiple scattering of scalar waves it may be valid to characterize this 
behaviour simply in terms of the loci described below. 

II. GEOMETRIC INTERPRETATION OF THE IVIETHOD 

The two-dimensional field scattered by either of the boundaries illustrated in 
Fig. 1 may be described by the multipole expansion 

[S,], 7 b,], hlo * b!J, 
FIG. I. Multipole vectors associated with the elements in a two cyltider array. 
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where q = 1,2 identifies the scattering boundary; (Y, 0) are the polar coordinates 
of the observation point P measured from the centre of the circle enclosing the 
boundary; H,!f’ is the Hankel function of the second kind of order m; S,, and A,,, 
are the symmetric and antisymmetric multipole strengths; k = 2n=/h is the wave 
number; and the time-dependent factor exp(j&) has been suppressed. 

The field represented by Eq. (1) is conveniently described by multipole vectors 
whose components are the complex constants in the multipole expansion 
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where the subscript q inside the brackets specifies the boundary with which the 
multipole vector is associated. Implicit in Eq. (1) is a particular choice of coordinate 
origin and orientation, and the subscript ,6 appearing outside the brackets in (2) 
indicates that the components of this vector correspond to a coordinate system 
oriented in the direction 0 = /3, relative to some other arbitrary but fixed coordinate 
system. 

If one of the parameters, such as angle of incidence or cylinder separation, of 
the configuration shown in Fig. 1 is altered, then the waves scattered by both 
cylinders will also change. Consequently, the components of the multipole vectors 
defined by (2) will vary and the “tips” of these vectors may be imagined to describe 
loci in multipole vector space, as a function of the varying parameter of the 
multiple-scattering configuration. Drawing these loci on paper implies projecting 
them onto a plane, and of the many ways this might be done the simplest was 
selected-namely, the orthogonal projection of this locus onto one of the coordi- 
nate axes of multipole vector space. Because the vector components are complex 
numbers, the final result is a two-dimensional curve in the familiar complex plane, 
which will be called a “multipole locus.” 

Application of this method simply requires plotting one of the numbers S,, , S, , 
or 4, etc., in the complex plane, as a function of the varying parameter of the 
multiple-scattering configuration. It might be anticipated that many such diagrams 
would be required to yield any insight into multiple-scattering phenomena, but 
it was found that the multiple loci were substantively the same for SO , S, , and A, , 
for the cases investigated. Loci derived from the variation of S,, will be called 
“monopole loci,” and these appear to be as suitable as any other for studying the 
multiple scattering of scalar waves. 

Direct plotting of the loci in the manner outlined would yield confusing patterns 
from which little could be learned about multiple-scattering effects. This is 
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appreciated when it is realized that even if only one obstacle were present in the 
field, its multipole vector would vary with changes in the shape or absolute position 
of the scatterer, From the viewpoint of multiple-scattering interactions, such 
variations are trivial, and somehow they must be suppressed in the graphical 
presentation. The necessary modification to the procedure is achieved by nor- 
malizing the complex number S,, (or S, , etc.) with respect to its single-smtkricg 
value and pl.otting the quotient on the complex plane. 

There are two ways of envisaging what the resultant pattern descriSes: in terms 
of the geometric interpretation given above, one may imagine an observer to be 
located at the “tip” of the single-scattering multipole vector who is conseq~e~t~~ 
unable to detect changes in single-scattering values. The muitipole locus is then 
ths projection of the apparent multipole vector seen by ‘his observer, and his 
(projected) position in the complex plane is denoted bq: s = 1 +$I. Alternatively, 
we may imagine all obstacles except one to be temporarily removed from the field 
and the se?ected projection of this object’s multipole vector is then assigned :hr 
value J = 1 ‘-JO, which determines a scale for the diagram. The other scattering 
bodies are now replaced in the field, causing the multipole vector in question to 
change. It is only this change which contributes to ,the multipole ?ocus. 

III. MuLTIP0r.n Locr FOR TWO CYLINDERS 

A. Ilzterpretation of the Multipole EquL7itiotu 

The matrix equation for the multipole vector [S,], ) which describes the sym- 
metric component of the wave scattered by the left-hand cylinder in Fig. i is 

and equations of the same algebraic form may be derived for [S,],, , [A,], and [A,], . 
The foundations of the method leading to this equation are given in [6] and a 

detailed derivation is given in [5, Eq. 251. in this paper we are concerned only 
with the physical interpretation of this expression and how it may be related tc 
the multipole Loci. 

In Eq. (31, I is the identity matrix and [CA] is a square induction coehkiem 
matrix relating the wave scattered by cylinder 2 to the wave scattered by cylinder I. 
CT+ represents the product of two induction coefficient matrices and arises from 
the interdependence of the waves scattered by the two obstacles. The superscript 
zero associated with the multipole vectors on the right-hand side of this equation 
explicitly identifies these as the single-scattering values associated with the cykder 
specified by the subscript. 
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The elements of the [C] matrices are functions of the separation between 
cylinders and also the radius and physical properties of these scatterers. The 
elements of the [L&O] and [S,O] matrices depend only on the nature of the individual 
scatterers and the phase and magnitude of the primary (or direct) illumination at 
these bodies. 

In some respects multiple-scattering is analogous to a multivariable control 
system in which there is cross-coupled feedback between inputs and outputs. The 
analogy is illustrated by the block diagram in Fig. 2, where application of the rules 
for analyzing such systems leads to Eq. (3). The additional transforms depicted 
by the inverters (-1) in this diagram are included to facilitate comparison with 
the formal derivations cited above. 

FIG. 2. Schematic representation of multiple scattering as a multivariable control system. 
For circularly symmetric boundaries there is no coupling between the A and S multipole vectors. 

The elements of the CA and CA matrices vary with cylinder separation as 
(k&1/z and consequently those of C,+ vary as (kd)-I. Therefore, when the cylinders 
are widely separated, the feedback paths in Fig. 2 are effectively opened and each 
cylinder scatters as though there were no other bodies present. Setting 
[C,‘,] = [CA] = 0 thus leads to the single-scattering approximation 

L%lo = L%“lo = Ls”lo - w 

The components of this vector are the normalizing factors used in constructing 
the multipole loci from the exact vector obtained by solving Eq. (3). 

As the separation between scatterers is decreased, terms of the order of (kd)-l12 
are no longer negligible but it may still be permissible to neglect terms of the 
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order of (/cd)-r. En Eq. (3) this corresponds to setting [I - Crf] = [fl which leads 
to the double-scattering approximation 

Physicaliy, this approximation implies that the total wave scattered from 
cylinder 1 comprises a component, [SIo], originating from direct scattering of the 
primary illumination and another component, [C&][SgO]O ~ arising from scattering 
of the incident wave after a single reflection from its neighbour. As the vector 
given by Eq. (5) must be generated in the course of the computation, it is convennen: 
to retain these values for subsequent plotting on the multipole locus diagram. 

If [I - &+]-I is formally expanded usin, a the binomial theorem and then 
multiphed into the right-hand side of (3) an infinite sequence of terms of the form: 
I, c, C’, c5 ... is obtained, which may be identified on a one-to-one basis w-ith 
successive orders of multiple-scattering [8, 12, 131. 

B. Interpretation of Mdtipde Loct 

Figure 3 illustrates examples of multipole loci as 2 function of the incidence 
angle dehned in Fig. 3a, for two 1.0~X-diameter cylinders with TM(E-polarized)- 
wave incidence. Exact solutions obtained from Eq. (3) are shown as crossed circles. 
The solid and broken curves, representing the monopoie loci for the two cylinders, 
spiral about s = 1 + j0 in opposing senses 2s the angle of incidence is increased. 
Distance between this point and the curve is some measure of multiple-~cat~~r~ng 
effects. The curves meet at 8 = &90”, corresponding to normal incidence on the 
plane of the two-cylinder array. Points labelled D correspond to norma!ized 
monopole values predicted by Eq. (5). 

The parameters in Fig. 3b are the same as those used in 15, Figs. 12, 13] to 
calculate surface currents induced on the scatterers 2s 2 function of incidence angle. 
The monopole loci presented here lead to the same conclusions on multip’re- 
scattering effects that were implied by the results of the more laborious study: 

The close approach of the locus to s = I + jS for B = 0’ (end-on illumination) 
indicates that for this condition the “exposed” cylinder scatters almost as if it 
were in isolation. This interpretation is corroborated by the large error incurred 
in using Eq. (5) for this case, as demonstrated by the large separation between 
the curve and the associated D point. On the other hand, for the ‘hidden” cylinder 
at 6 z= 180”, the error in the double-scattering approximation is small, again 
implying that [S& ,a [S,O], is an excellent approximation for the front element. 
Similar behaviour is observed for the larger cylinder separation, but the Ior, are 
there wound more tightly about the single-scattering value. 

At broadside illumination (0 = *90°) large errors are incurred by using either 
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FIG. 3. Monopole loci for two 1.0~h-diameter conducting cylinders, as a function of angle 6’. 
Parallel (E) polarization, (a) geometry, (b) kd = 10.0, (c) kd = 20.0 (D = values predicted by 
Eq. (5)). 

the single- or the double-scattering approximation, as shown by the appreciable 
separation between the monopole locus and the point s, or the associated D. The 
dependence of multiple-scattering effects on separation, under broadside illumina- 
tion of the array, is investigated in Figs. 4 and 5. The former illustrates the 
monopole locus, while Fig. 5 shows the dipole loci, derived from S, and Al , for 
the same conditions. Because the single-scattering value of S, is zero, normalization 
is not required, and the locus in Fig. 5a spirals about the origin rather than about 
the point 1 +,jO. 
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FIG. 4. Monopole locus at normal incidence for one of two I.O-h-diameter coaducting 
cylinders, as a function of separation. Parallel polarization. 

(4 (b) 

FIG. 5. Dipole loci at broadside incidence for same conditions as Figure 4. (a) S, compone:,t, 
(b) Al component. I- - - -- - antisymmetric single-scattering dipole magnitude I Ai” 1.j 

-4s noted earlier, a significant feature of this graphical method is that these 
loci have similar shapes, exhibiting maximum and minimum excursions <ran: 
s = I + JO for the same values of separation. Similar spiral patterns are aisc 
obtained with other cylinder diameters. 

The very small excursions of the antisymmetric dipole locus in Fig. 5b are a 
result of the relatively weak coupling effects influencing the A multipoles, It has 
been noted that the elements in the [CT&] and [CT+] matrices vary as (ic~$-“!” and 
(M-l, respectively. However, the elements in the corresponding ant,isymmetr.ic 
matrices [CIJ and [CT-] vary as (IccI-~~~ and (a~&~. Consequently, loci based on 



274 HOWARTH, PAVLASEK AND SILVESTER 

the A multipole components are of less utility for studying multiple-scattering 
interactions than those derived from the S components. 

Examination of Figs. 4 and 5a reveals that when the multipole locus is farthest 
from the single-scattering value, then the corresponding double-scattering approxi- 
mation D is also greatly in error, and the reverse is also true. In particular, the 
errors in the single- and double-scattering approximations appear to be greatest 
when kd w 9.23 and kd w 15.76, and least when kd w 12.3. In [5, Fig. 81 the 
former values were associated with a resonant multiple-scattering condition which 
produces maximum induced-current side lobes on the scatterer surface, while the 
intermediate value corresponds to an antiresonant interaction under which such 
side lobes are a minimum. From this we infer that the excursions of the multipole 
loci about the single-scattering point s reflect real changes in the multiple-scattering 
interactions occurring between two cylinders. 

In the cited paper it was noted that null pairs occur in the near field on the 
shadow side of the array when resonant multiple-scattering induces large current 
side lobes on the cylinder surfaces. Data presented there in tabular form relating 

FIG. 6. Null positions in the diffracted field behind two 1.0-h conducting cylinders. Parallel 
polarization. Normal incidence. The cross-hatched area indicates where nulls were detected 
experimentally for kd = 10.0. 
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to this phenomenon have been reproduced graphicaliy in Fig. 6. Nulls occur in 
the near field for separations where 8.7 < lid c 10.7, and it is interesting rha; 
this range corresponds approximately to those portions on the multipole !oci k~ 
Figs. 4 and 5a which lie on the circumference of a circle. Its centre, as determined 
by geometrical construction, is at the tip of the arrow iabeiied C. Positions of the 
near-field nulls which occur at kd = 15.76 are indicated by the open stars in Fig. 6. 
Curiously, these null positions lie near those corresponding to kd = 9.2X and 
these two separation values fall at roughly the same angular positions on the NO 
arms of the spirals shown in Figs. 4 and 5. 

A simple physical interpretation of the gross featnres of these loci may be 
developed in terms of the multiple reflection of KM waves by parallel conducting 
boundaries. When the separation between these boundaries (corresponding to the 
gap between the cylinders in Fig. 1) is an odd multiple of ;\,iZ all orders of multiply- 
scattered waves arrive in phase with the primary illummation. Referring tc the 
curve in Fig. 4, accounting for only the lowest order scattered wave @aces the 
solution at s; including the next order of scattering carries the solution of B; 
successive higher orders of multiply-scattered wiaves carry the solution from D 
to the monopoie locus. Because all these multiply-scattered waves are in phase ar 
any one boundary, the progression from s to D to the exact value is monotonic, 
as illustrated by the relative positions of these points at a multiple-scatter;n, 
resonance. 

When the gap between cylinders is approxlmateiy an integral number of u;ave- 
lengths the successive orders of multiply-scattered waves arrive with aiternaring 
phases. Using kd = 12.3 as an example, the double-scattering approximation 
carries the solution from s to D but causes it to overshoot the true value: the next 
order of scattered waves would carry the solution from D back towards s, and 

is damped oscillatory behaviour finally converges to a point on the moropole 
Bocus. 

The quasiperiodic relation between multiple-scattering phenomena and separa- 
tion, which is implied by the spiral form of the multipole ioci, is also evident In the 
experimental results obtained by Row [7, Fig. 32; 11, Fig. 1 I]. Examination of 
these figures reveals that the discrepancy between the measured values and rhz 
single-scattering predictions exhibits two distinct behaviours. One of these appears 
as an abrupt shift from large negative differences to large positive differences at 
critical separations. Such changes alternate with portions of the curves where the 
discrepancies are smaller and their rate of change with separation is more gradua:. 
The separations at which the abrupt changes occur correspond to gaps between 
the cylinders which are approximately an odd multiple of h/2 (resonann. mulrip’e- 
scattering). Figure 10 of Row’s paper also shows a similar abrupt shift9 again zt 
a separation which corresponds to an intercyhnder gag of ,-Q),,L 
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IV. MULTIPLE-SCATTERING PHENOMENA IN THREE-CYLINDER ARRAYS 

A. The Nearest-Neighbour Approximation 

A planar three cylinder array is probably the simplest multiscatterer system 
which exhibits not only element-pair multiple-scattering effects but also different 
genres of interaction between subgroups of the array. This configuration has been 
investigated for both TM and TE (H-polarized) illumination of conducting 
cylinders and for TIM illumination of dielectric cylinders. 

In analyzing multiple-scattering effects in arrays of more than two cylinders it 
is advantageous to have some method of distinguishing interactions between 
different subgroups of the array. In the configuration investigated it is plausible 
that the central scatterer may partially shield the outside elements from each 
other’s influence, and consequently the total scattered field will be determined 
primarily by multiple-scatterings between adjacent cylinders. If this hypothesis is 
valid then an analysis which includes only nearest-neighbour interactions should 
prove to be as accurate as an exact solution [6, Eqs. 31-331. Conversely, the failure 
of the nearest-neighbour approximation to predict the correct scattered field is 
an indication of coupling effects between the outside elements of the array. The 
two calculations are conveniently compared on a monopole locus diagram. 

The multipole vector equations for the nearest-neighbour approximation cannot 
be formulated by simply neglecting coupling between the two outside elements. 
The essential step in developing this approximation is to resolve the multipole 
vector for the central cylinder into two constituents, each of which is coupled to 
only one of the adjacent elements in the array. The nearest-neighbour hypothesis 
postulates the independence of these two components. 

The control system analogue of the nearest-neighbour multiple-scattering model 
is illustrated in Fig. 7. The solid lines show the paths which exist when only 
cylinders 1 and 2 are present, and the broken connections are made when cylinder 3 
is added to the array. To relate this model to nearest-neighbour scattering, we 
consider the change in scattered fields which occurs when a new element is added 
to the array. 

If the configuration initially comprises only cylinders 1 and 2 then the feedback 
system in Fig. 7 may be reduced to that given in Fig. 2. The nearest-neighbour 
hypothesis implies that [S,] will not change when element 3 is added to the array, 
although [SJ will likely undergo a large change. This behaviour may be analyzed 
in either of two ways: in the neighbourhood of cylinder 1, the scattered field 
originating from the added cylinder is just sufficient to nullify the change in [SJ; 
or, by neglecting coupling between the outside elements we are also required to 
neglect coupling between cylinder 1 and that portion of [S,] which arises from 
interaction with cylinder 3. The two viewpoints are mathematically equivalent, 
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FIG. 7. Feedback system analogue of nearest-neighbour coqling in a planar three cylider 
array. 

and while the first may be more acceptable on physical grounds, the second is 
computationally more convenient and is the one illustrated in Fig. 7. Here, [SE’] 
describes the partial field scattered by the central element as a result of irs inter- 
action with cylinder 1, alone. 

B. Mor~opole Loci for Three-Cylinder Amgw 

The monopole positions of the three cylinders for several sets of parameters 
are illustrated in Fig. 8. Fig. 8(a) has been drawn for the same conditions as &ox 
used in [5, Fig, 151, where the surface current pIots indicate that, under broadside 
TM illumination, the two outside cylinders scatter indepsndentiy of each ether. 
This conclusion is supported by the close agreement between the nearest-neighbour 
and exact monopole positions for all three cylinders at E, = 90”. 

For angles of incidence decreasing from 9Q” to O”, the surface current graphs 
in the cited reference show that the frontmost cylinder becomes progressively more 
effective in shielding the other two elements from the incident wave. The monopole 
locations in Fig. S(a) at 0, = 0” imply relations similar to those given by the 
surface current curves. The frontmost cylinder (No. 1) receives the full i~~~rni~~at~o~ 
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FIG. 8. Comparison of monopole values for elements of an array of 1.0~h-diameter conducting 
cylinders. Parallel polarization. (a) kd = 10.0, (b) illumination at the Rayleigh wavelengths with 
normal incidence. (o = nearest-neighbour approximation, x = exact solution.) 

and scatters as though it were in virtual isolation, because of the low illumination 
reaching the other two scatterers. This is illustrated by the pro?rimity of this 
element’s monopole position to the point s = 1 +jO in Fig. 8(a). The difference 
between the nearest-neighbour and exact solutions in this case is so slight that it 
cannot be shown on the scale of the figure. A larger discrepancy between the exact 
and approximate solutions may be noted in the case of the rearmost element 
(No. 3), because the nearest-neighbour approximation does not account for the 
additional shielding provided by cylinder No. 1, and therefore predicts a somewhat 
larger scattered wave than is actually obtained. This error in predicting the wave 
scattered by No. 3 is also reflected in the difference between the two monopole 
positions for the adjacent element, No. 2. 

In arrays where the nearest-neighbour approximation yields accurate results, 
it may be expected that classical diffraction grating theory may be used to relate 
the total scattered field to the field scattered by an individual element in the array. 
The intensity of the total scattered field is given by [2, p. 4031 

41-4 = fW W 14 I’o’(~), (6) 

where y is a function of the angles of incidence and observation; H is the inter- 
ference function for a grating, which depends on the number of elements in the 
array and their separation, but not their individual transmission or scattering 
properties; and I(O)(p) is the intensity function for a single member of the array, 
whose influence on the diffraction pattern appears as a spatial intensity modulation 
of H. Born and Wolf derive this relation for the intensity of the field transmitted 
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by a grating of slits, but the analysis is equally applicable to the superposition of 
scattered fields, which is under consideration here. 

A fundamental assumption underlyin g Eq. (6) is that P(n), the intensity 
fuaction of the basic element, is independent of the number of elements in the 
grating. Thus, adding another element to the array will aiter H(PJ> kdzp) but wI11 
not affect I(O)(p). Varying the grating period, G!, will affect both N and P(p), but 
the latter can be found from a calculation which inciudes only multiple scatterings 
between adjacent elements (or equivalently, the intensity function for the new slit 
width). 

Therefore, as the same assumptions underlie Eq. (6) and the nearest-neighbour 
hypothesis, we should expect the latter to be invalid under conditions where 
classical grating theory is known to be inadequate. Such a condition occurs ar a 
Rayleigh wavelength, which corresponds to launching one of the orders cl 
di3acted wave in the plane of the grating. For broadside illumination, such 
anomalies occur when d = nh (H an integer). 

Figure g(b) shows the monopole locations for the planar array under broadside 
TM illumination at a Rayleigh wavelength. A slight difference may be noted 
between the two solutions for the centre cylinder, with d = A. The very smah 
diZerences shown in this diagram reflect the weakness of P-type (parallel poiariza- 
tion) grating anomalies [9, lo]. 

FIG. 9. -vIonopole positions for a three cylinder array with :ransverse (R) p~lar~zat~Q~. Wm 
parameters as for Figure 8. 
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Only weak grating anomalies are produced with parallel polarization because 
the array does not support TM surface wave propagation. However, with 
TE(H polarized or transversely polarized)-wave incidence, the array will support 
surface wave propagation, giving rise to strong Wood’s (S-type) anomalies at the 
Rayleigh wavelengths, as illustrated by the monopole positions in Fig. 9. When 
kd = 10, differences between monopole values predicted by the exact and approxi- 
mate formulations are small. However, when d = h two distinct phenomena are 
seen to occur: first, there is strong adjacent-element coupling which is identified 
by the large distance of both the nearest-neighbour and exact values from 
s = 1 + j0; second, the relatively large separation between the two monopole 
positions indicates appreciable coupling between the two outside cylinders, 1 and 3. 

FIG. 10. Geometry and monopole positions for an array of three dielectric cylinders. TM 
illumination. The solid lines are loci of the exact solution values, and the broken lines are the loci 
of the nearest-neighbour approximation. 

Figure 10 presents an example of the use of the monopole locus to interpret 
multiple-scattering effects in an array of 1.0~h-diameter dielectric cylinders, with 
Ed = 2.35. The monopole loci are drawn as a function of separation for TM 
illumination at broadside incidence. 

Although these patterns indicate appreciable coupling between elements 1 and 3 
for kd B 8.86, the nature of this interaction is evidently quite different from that 
shown in Fig. 9. In the preceding figure, the surface wave propagating at a Rayleigh 
wavelength appears to affect all three elements equally, if anomalous behaviour 
is measured in terms of displacement between the approximate and exact monopole 
positions. However, with the dielectric cylinders, the approximate solution for 
the centre element displays nearly the same accuracy over the whole range (greater 
than h/2) of separations illustrated. Furthermore, interaction between cylinders 1 
and 3 is evidently reduced as a Rayleigh wavelength [kd = 4rr) is approached. 
These phenomena may be explained in terms of the lens-like action of the centre 
cylinder, which focuses waves scattered by one of the outside elements onto the 
other. 
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(a) 

FIG, 11. Equal intensity and equiphase contours for rhe scattered field in arrays of (a) 1, 
(b) 2, and (c) 3 1.0~A-diameter dielectric cylinders. cI. = 2.35, kd = 8.86, parallel polarization. 
The broken circles indicate where the next cylinder in the array would be placed. (- intensity 
contours at 5-&S intervals relative to the incident field, - -- -- equiphase contcnrc- at LW 
intervals.) 
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Figure II(a) shows the scattered field for a single dielectric cylinder, and it will 
be noted that the intensity of this field is more than 10 dB below that of the incident 
wave over most of the region which would be occupied by the second element in 
the array. As this scattered field is so weak relative to the primary wave, neglecting 
multiple-scattering effects in a two element array would introduce only a small 
error in computing the total diffracted field. The nearest-neighbour approximation 
for elements 1 or 3 in Fig. 10 is also the exact solution for one cylinder of a two 
element array, and it is seen that points on this broken line locus lie nearest to 
s = 1 +jo. 

Figure 1 l(b) illustrates the exact solution for the field scattered by two dielectric 
cylinders, with kd = 8.86. In the region which the next cylinder in the array 
would occupy, this field is much larger than in the first case. 

For purposes of explaining this increase in scattered field intensity,’ we suppose 
that the wave scattered in the plane of the array, by a single cylinder, may be 
characterized by the complex number $d (l). To the adjacent cylinder in the array, 
this appears approximately as a wave propagating from left-to-right (or vice- 
versa), and the lens-like properties of this element focus this wave onto the next 
scatterer in the grating. We postulate that this focusing action may be described 
by a focal transfer function, T, such that the wave originating from scattering at 
the first element has been transformed to T@’ when it strikes the third cylinder. 
The total scattered field at the position of the third cylinder comprises this com- 
ponent plus the wave scattered by the intermediate element, which must equal 
#Al) if the cylinder spacing is uniform. Ignoring second-order multiple-scattering 
effects, the total scattered wave at cylinder No. 3 is 

$J5” = $p + Tip = (1 + T) $p. (7) 

In terms of this simplified model, Eq. (7) implies that the magnitude of z&” 
depends on the phase of T, which is some function of object and image distances 
for the centre element “lens.” These distances, in turn, are related to the cylinder 
spacing. The intensity contours in Fig. 12 show that the combined effects of 
diffraction and “spherical” (actually cylindrical) aberration produce a diffuse 
focus, which results in a wide range of cylinder separations over which some 
focusing action is possible. 

The monopole loci of Fig. 10 may now be explained in terms of this model. 
The large difference between exact and approximate solutions for the outside 
elements at kd = 8.86 implies that the phase of T is 0” at this separation. Applying 
Eq. (7) to the fields at the centres of the broken circles in Figs. II(a) and 11(b) 
yields / T / M 1.25, a value which is consistent with the computed field along the 
optic plane of a single cylinder, illustrated in Fig. 12. 

As the separation between cylinders is increased, the phase of T is retarded, 
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FIG. 12. Equal amplitude and equiphase contours for the total field in the vicinilf rif a 
1.5~h-diameter dielectric (cr = 2.35) cylinder which is illuminated by a parallel polarized piane 
wave propagating from left to right. Note the intensity gaip along tk optical plane of the system 
fcx points lying within 2h of the cylinder. (Intensity contours a: 3-B intervals, phase at 180’ in- 
tervals). 

and when this quantity is - -120” (kn’ a 11) the relation 1 1 + T ) s 1.0 obta;ns7 
which implies that / z+G~” j = / $a) I. In other words, good agreement is obtained 
between nearest-neighbour and exact solutions with kd ‘q 11 because both calcula- 
tions yield the some scattered field magnitude. When the phase of T is 180” 
(kkd x 12.5)Y z)‘,“’ is reduced below the value of &?, hence the exact solution shows 
better agreement with the single-scattering value (which neglects JiL”> than it. does 
with the nearest-neighbour calculation (which yields an excessive value for @pi, 
Computed scattered field values for kd = 12.51 support this interpretation. 

Exact and nearest-neighbour solutions for cylinder 2 always show good agree- 
ment because the rescattering of the scattered and focused waves reaching the 
outside elements is a second-order perturbation from the viewpoint of the centre 
element. 

The simple iterated scattering-and-focussing model outlined above may be 
extended to an N-cylinder array and leads to the expression 

which gives the approximate value for the scattered field in the region which would 
be occupied by the next element added to the array. It has been noted that &? is 
small, and consequently the single-scattering solution yields accurate diffracted 
field values for small arrays. However, if / T 1 > I, then Eq. (8b) implies that for 
sufficiently large N, &“’ will not be negligible in comparison with the primary 
illumination. With large arrays of dielectric cylinders, therefore, markedly different 
behaviour should be expected from that predicted by the single-scattering hy~oth- 
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esis, even though this may be valid for small arrays. The implications of this 
statement for diffraction gratings composed of dielectric scatterers, which exhibit 
an intensity gain in their focused beam, is that anomalous behaviour may be 
observed not only at critical wavelengths, but also with some minimum number 
of elements in the array. 

The experimental observation of this phenomenon has been recently reported [l]. 
Using 1.0~h-diameter cylinders with E, = 2.35 and kd m 12.5, good agreement 
was obtained between measurement field values and predictions based on the 
single-scattering hypothesis, with up to five cylinders in the array. However, 
significant differences were observed with a nine cylinder grating and agreement 
between experiment and single-scattering predictions was poorer still with an 
eleven element array. Using 0.5~h-diameter cylinders, whose shorter focal length 
and smaller aperture imply that 1 T 1 < 1, the single-scattering hypothesis was 
found to be adequate for a nine element array. 

V. DISCUSSION 

The value of the graphical method described here lies in its succint presentation 
of complicated relations between multiple-scattering effects and the parameters 
which influence them. Thus far, it has been used primarily as a selection mechanism 
to determine which computed results should be plotted in more conventional 
forms, such as induced surface currents or scattered field intensity contours. 
However, in all the cases investigated it was found that distinctive geometric 
features of the monopole loci were correlated with specific physical behaviour. 

In some instances, the monopole locus has provided physical insight into 
multiple-scattering behaviour (for example, the quasiperiodic nature of multiple- 
scattering resonances and the focusing action of a dielectric scatterer), while in 
the case of a Wood’s anomaly in a three cylinder array, the locus exhibited the 
behaviour we would expect on the basis of our knowledge of this phenomenon. 
Because these graphs can be prepared more rapidly than alternative presentations, 
they provide a convenient method for the preliminary reduction of raw numeric 
data to a form which facilitates its interpretation. 

The patterns of these loci suggest that they might serve as more than qualitative 
indicators of multiple-scattering effects. In particular, it may be possible to associate 
quantitative measures with these graphs to determine whether a particular 
phenomenon would be observable. In the case of dielectric scatterers, for instance, 
although interesting multiple-scattering behaviour has been described, it would 
not be observable with a small array, using normal measurement techniques. 
Information on observability of these phenomena has been lost by virtue of the 
normalization scheme which has been employed. To determine whether a par- 
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ricular multiple-scattering phenomenon would produce a significant effect OD t&e 
total field. one must relate the strength of the scattered field associated with this 
eEecect to the incident field. If this relationship can be convenientIy illustrated on 
the multipole locus then this graphical method couid be used for the quantitarive 
representation of wave scattering by multiple obstacles. 
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